Db2 Automatic Statistics Deep Dive

John Hornibrook
IBM Canada

Current and accurate catalog statistics are the lifeblood of the query
optimizer Db2 has had automatics statistics support since version 8.2 and
real-time statistics were introduced in version 9.5. Automatic statistics
collection is enabled by default for new databases and is the recommend
best practice. So if you are still hesitant to use them, or have tried and have
had a bad experience, attend this session to gain a deeper understanding
of how they work and why you can trust them to simplify your DB
administration and improve overall query performance. In addition to
providing details on the automatic statistics architecture, this presentation
will provide details on ways to monitor and control automatic statistics
collection so that it works well for any type of Db2 system.

Agenda

e Automatic statistics overview

e Internal architecture deep-dive

* Monitoring and controlling automatic statistics collection

* Locating the most current version of the statistics

» Customizing automatic statistics collection for your environment

RUNSTATS review

e Utility to gather statistics on tables and indexes

e Statistics are essential for query optimization
* Used to compute access plan cost and cardinality

* Physical statistics
* E.g. Number of pages in table, number of levels in an index

e Data statistics
* E.g. Number of rows in table, number of distinct values in a column, frequent values,
quantiles

e Statistics are stored in the system catalogs
* Visible in SYSSTAT and SYSCAT views:
TABLES, COLUMNS, INDEXES, COLDIST, COLGROUPS

When the SQL compiler optimizes SQL query plans, its decisions are heavily
influenced by statistical information about the size of the database tables and
indexes. The optimizer also uses information about the distribution of data in
specific columns of tables and indexes if these columns are used to select rows
or join tables. The optimizer uses this information to estimate the costs of
alternative access plans for each query. When significant numbers of table
rows are added or removed, or if data in columns for which you collect
statistics is updated, execute RUNSTATS again to update the statistics.
Statistical information is collected for specific tables and indexes in the local
database when you execute the RUNSTATS utility. Statistics are collected only
for the table partition that resides on the partition where you execute the
utility or the first partition in the database partition group that contains the

table. The collected statistics are stored in the system catalog tables.

Automatic Statistics Collection

e Statistics are collected using 2 approaches:
¢ In the background (asynchronously)
* When SQL statements are prepared (synchronously) — Real-time Statistics (RTS) collection

Tables are identified by:

¢ Amount of data change over time
¢ Change in data distribution

« Statistical needs of queries (RTS)

Supports tables, indexes, nicknames (Federation) and statistical views
Automatic statistics collection is unobtrusive and low overhead

History:
* Automatic statistics collection first introduced in Db2 8.2
* Real-time Statistics (RTS) collection introduced in Db2 9.5

Automated Statistics Collection

e Collects statistics in the background (asynchronous)
e Schedules statistic collection

* Table evaluation occurs every 2 hrs

* Based on amount of data change that has occurred since last statistics collection
e User control available for:

* When collection occurs
» Targettables

Real-time Statistics Collection

e Collects statistics at statement compilation time (synchronous)

e Table(s) identified based on statistical needs of the query and amount of
data change

e Statistics can either be collected with RUNSTATS or ‘fabricated’

e Statistics are immediately made available to other connections via a
statistics cache

e (Catalogs are not updated immediately to minimize overhead

* Requests immediate background (asynchronous) statistics collection

* |f statistics weren’t ‘fully’ collected

e Why are RTS important?
* Provides more current statistics to the query optimizer

RTS and Automatic Statistics Activation (Db2 11.5)

Automatic maintenance (AUTO_MAINT) = ON
Automatic database backup (AUTO_DB_BACKUP) = OFF
Automatic table maintenance (AUTO_TBL_MAINT) = ON

Automatic runstats (AUTO_RUNSTATS) = ON
Real-time statistics (AUTO_STMT_STATS) = ON
Statistical views (AUTO_STATS_VIEWS) = OFF
Automatic sampling (AUTO_SAMPLING) = ON

Automatic column group statistics (AUTO_CG_STATS) = OFF

Automatic statistics collection
* DB configuration parameter (AUTO_RUNSTATS)
* Default is ON for new DBs

RTS

* DB configuration parameter (AUTO_STMT_STATS)
* Default is ON for new DBs

Under automatic table maintenance hierarchy

* AUTO_RUNSTATS can be ON while AUTO_STMT_STATS is OFF
* AUTO_STMT_STATS can’t be ON unless AUTO_RUNSTATS is ON
Automatic column group statistics is new in 11.5

* OFF by default
* More on this later...

RTS and Automatic Statistics Activation (Db2 11.1)

Automatic maintenance (AUTO_MAINT)
Automatic database backup (AUTO_DB_BACKUP)
Automatic table maintenance (AUTO_TBL_MAINT)

Automatic runstats (AUTO_RUNSTATS)
Real-time statistics (AUTO_STMT STATS)
Statistical views (AUTO_STATS_VIEWS)
Automatic sampling (AUTO_SAMPLING)

= ON

OFF
ON
ON
ON
OFF
ON

Automatic sampling (added Db2 10.1)
* DB configuration parameter (AUTO_SAMPLING)
* Defaultis ON for new DBs as of Db2 11.1

RTS and Automatic Statistics Activation (Db2 10.1)

Automatic maintenance (AUTO_MAINT)
Automatic database backup (AUTO_DB_BACKUP)
Automatic table maintenance (AUTO_TBL MAINT)

Automatic runstats (AUTO_RUNSTATS)
Real-time statistics (AUTO_STMT_STATS)
Statistical views (AUTO_STATS_ VIEWS)
Automatic sampling (AUTO_SAMPLING)

= ON

OFF
ON
ON
ON
OFF
OFF

* Automatics statistics collection for statistical views (Db2 10.1)
» DB configuration parameter (AUTO_STATS_VIEWS)
* Defaultis OFF for new DBs

e Automaticsampling (Db2 10.1)
* DB configuration parameter (AUTO_SAMPLING)
* Defaultis OFF for new DBs

RTS and Automatic Statistics Activation (Db2 9.7)

Automatic maintenance (AUTO_MAINT)
Automatic database backup (AUTO_DB_BACKUP)
Automatic table maintenance (AUTO_TBL_MAINT)

Automatic runstats (AUTO_RUNSTATS)
Automatic statement statistics (AUTO_STMT_STATS)
Automatic statistics profiling (AUTO_STAT ’ROF)

Automatic profile updates (AUTO_PROF_UPD)
Automatic reorganization (AUTO_REORG)

Automatic statistics profiling is deprecated in Db2 10.5

I

“Automatic statement statistics” label changed to “Real-time statistics” in Db2 10.1

Automatic Statistics Collection Deep Dive

e This is an autonomic feature
¢ You don’t need to know the implementation details!

e But it might be interesting to peek under the hood...
* Asynchronous statistics collection
» Synchronous statistics collection
* Statistics fabrication
« Statistics caching
« Statistics activity logging and monitoring
* Observing real-time statistics with the explain facility

This Photo by Unknown Author is licensed under CC BY-SA

Automatic Statistics Collection Architecture

7 ~ Collection evaluator|
Table been accessed? | RTS SQL Statement
o
Auto-RUNSTATS [} Request
Table has statistics? PN abest avene (U Queue
;4
‘Small’ UDI? SQL Compiler

Sensitivity

| e Analyzer

‘Large’ UDI change? |
RUNS%—\WaWOQ Cach%—o Optimizer

!

|

|

|

I

I

|

|

Synchronous
Collect

Statistics
Conti 6— RUNSTATS
Statistics

fabricator

I $ample stats and compare

'*:‘ Update history }‘7

Asynchronous Statistics Collection

Real-time statistics

* YES UDI = Updated, deleted, inserted components
—: NO row counter

The box on the left represents the background automatic statistics collection process.
This process runs asynchronously to DB operations such as SQL statement execution.
The statistics evaluator determines if statistics should be collected and then initiates a
‘background’ RUNSTATS. The collected statistics are stored in the system catalogs.
The statistics for a particular table are loaded from the system catalogs into a catalog
cache, whenever they are referenced by the SQL Compiler.

Real-time statistics components are represented by the green boxes. These boxes will
be described in more detail on subsequent pages.

Statistics Cache — Synchronously collected statistics or fabricated statistics are stored
here, until they are written to the system catalogs. The Catalog Cache loads new
statistics from here, if they have not yet been written to the system catalogs

Sensitivity Analyzer — This component of the optimizer determines whether a
statement requires statistics, what statistics it requires and how to collect them.

Synchronous Collector — This component collects statistics synchronously (as part of
SQL statement compilation) by either invoking RUNSTATS or by fabricating statistics.

Asynchronous Request Queue — If the Sensitivity Analyzer determines that statistics
should be collected asynchronously, a request is added to this queue. Every 5 minutes,
a background process will be invoked to process requests in this queue.

12

Asynchronous Statistics Collection (1| 2)

e Db2 background process that occurs every 2 hours

* Determines whether statistics should be collected based on:
* Whether table has been accessed since DB activation (not accessed -> no collection)
* Whether the table has statistics (no statistics —> always collect!)
* Amount of data change since statistics were last collected
Based on a counter of the number of rows updated, deleted or inserted (UD|
counter)

“Small” UDI change —> no collection

“Large” UDI change —> always collect
“Small” and “Large” is not fixed percentage — it is a function of the size of the table

and the UDI value
Smaller tables require a larger %age UDI change, larger tables require a smaller %age UDI change

13

Asynchronous Statistics Collection (2| 2)

e |f UDI change is between “small” and “large”:
* Istable due for evaluation?
Based on past history
» Table <= 4000 pages -> collect statistics
* Table > 4000 pages
Collect small sampled statistics
Compare data distribution to current statistics

Full statistics don’t need to be collected if data distribution hasn’t changed
* Even if there has been moderate UDI activity

14

Real-Time Statistics Collection

* Occurs at SQL statement optimization time based on:
* RTSUDI counter
Same as UDI except reset after RTS collection
Never written to disk
» SQL statement “sensitivity analysis”

* Drives synchronous statistics collection by determining:
* If the query needs statistics
* Which tables referenced by the query require updated statistics
* How to collect the statistics

15

RTS Query Sensitivity Analyzer (1]3)

e 1. Determining if the query needs statistics
* Some statements can be optimized with no statistics
SELECT QUANTITY FROM ORDERS WHERE ID = ?
* Uniqueindex on ID
* Optimizer will always choose an index scan using the unique index
* Avoid RTS to minimize impact to OLTP applications
» Different optimization levels have different statistics needs
* |f statistics are determined to be unnecessary, basic statistics may still be fabricated
e.g. CARDINALITY, FPAGES

One of the goals of the sensitivity analyzer is to minimize the amount of
synchronous statistics collection for OLTP applications. The overhead of
synchronous collection may be more apparent to OLTP applications,
however they may be able to tolerate less accurate statistics.

16

RTS Query Sensitivity Analyzer (2] 3)

» 2. Determining what tables require updated statistics
* Determine if statistics are stale
Based on amount of data change and table size
Data change indicated by row count of update, delete and insert activity (UDI
counter)
Smaller tables require a larger %age UDI change, larger tables require a smaller

%age UDI change
Algorithm is consistent with asynchronous statistics collection

17

RTS Query Sensitivity Analyzer (3| 3)

e 3. Determine missing ‘interesting’ statistics
If any interesting statistics are missing, statistics are collected regardless of amount of data change
Interesting statistics are determined by how columns are used in the query
*+ “WHERE NAME = ? “can’t use distribution statistics
* (Unless REOPT ONCE/ALWAYS is specified)
* “WHERE NAME = ‘Jones’ ” can use distribution statistics
Considers options specified in the statistics profile
* E.g. Predicate may be able to use distribution statistics but they aren’t specified in the statistics
profile
* (More on the statistics profile later)

More details on statistical profiles and RTS are provided later in this presentation.
Repeating an overview here:

The RUNSTATS utility provides a statistical profile facility to:

1) register a statistical profile, while optionally gathering statistics

2) modify an existing statistical profile stored in the catalogs, while optionally gathering statistics

3) repeatedly gather statistics on the table using an already registered statistics profile for that particular
table.

This may be convenient for multiple scripts that need to perform RUNSTATS on the same set of tables so
the RUNSTATS options don’t need to be repeated in every script. Additionally, the statistical profile
can be specified for LOAD so that consistent RUNSTATS options can be used and don’t need to be
repeated on the LOAD command.

When a statistical profile is registered, a RUNSTATS command string corresponding to that profile is at
the same time built and stored in the STATISTICS_PROFILE column of the catalog table
SYSIBM.SYSTABLES. An internal version of the profile is also maintained in the system catalogs in
SYSTABLES.PACKED_DESC.

18

Sensitivity Analyzer — Statistics Collection Methods

e Determine how statistics should be collected
e Based on RTSUDI and interesting statistics

* Methods available:

¢ Fabrication
Derive subset of statistics from index and data manager metadata
* i.e. Internal real-time statistics
Very fast

¢ Synchronous collection
Perform RUNSTATS to collect full statistics
Within a time budget

« Asynchronous collection
Schedule background RUNSTATS collection
Same mechanism as automatic statistics collection
Uses a different request queue but a table will never be in both queues

19

Sensitivity Analyzer — Statistics Collection Methods

e Fabrication

* Partial fabrication to update HIGH2KEY/LOW2KEY, adjust histograms* if necessary
Small data change, range predicate on column, column leading in an index
 E.g. ORDER_DATE > 01/31/2008’
Allows optimizer to quickly see new values introduced into range

* Full fabrication for table and index statistics
Data change didn’t warrant full synchronous collection but statistics are slightly
stale OR
Previous synchronous collection timed out

= Also known as quantiles. Stored in SYSSTAT.COLDIST catalog.

Some applications issue queries with search conditions looking for newly inserted data.
However, if the statistics aren’t current, they may not include the newly inserted
data. For example, the HIGH2KEY statistic for the ORDER_DATE column may be
'01/15/2008’ but the query is looking for newer order dates. Consequently, the
optimizer will assume few rows qualify. Partial statistics fabrication makes the
optimizer aware of the newer order dates, providing there is an index that includes
ORDER_DATE as a leading column. The index will be quickly probed to determine
the second highest and lowest values, which are then used to update the
HIGH2KEY and LOW2KEY statistics. Any existing histogram statistics will be
adjusted too. Partial fabrication occurs more frequently than full fabrication or
synchronous collection, however it has lower overhead. More details on full
fabrication are on the next page.

Partial statistics fabrication
WHERE ORDER_DATE > ‘01/31/2008

Histogram statistics

HIGH2KEY = 02/04/2008 -> 03/01/2008

400000
350000 -
300000 -

VALCOUNT
N
ste)
[sts)
o0
sts}]

COLVALUE
VALCOUNT is the number of rows whose value is less than or equal to COLVALUE

The original value of the highest histogram entry is updated by probing an index on the
column to determine the current highest value.

21

Sensitivity Analyzer — Statistics Collection Methods

e Synchronous collection
* Orders tables smallest to largest
* Uses RUNSTATS sampling for large tables and indexes

e Asynchronous collection
Performed within 5 minutes
* Asynchronous collection is always scheduled:
When statistics are sampled or fully fabricated
* No asynch for partial fabrication — could drive too many asynch requests
Statistics could be inferior — get full statistics ASAP

Synchronous statistics collection will sample tables that have more than 4000 pages.

This value and algorithm may change in the future. Synchronous collection orders the
tables smallest to largest in order to prevent small tables from being starved by larger
tables.

Asynchronous collection is always scheduled if the statistics are sampled or fully
fabricated, to ensure the most accurate statistics are stored in the system catalogs. The
in-memory RTS are intended to provide the query optimizer with something more
accurate than the stale statistics, however the statistics stored in the system catalogs
should correspond to the options specified in the statistical profile, whether it is the
default profile or a profile provided by the user.

22

Statistics Fabrication (Derivation)

e Probe high and low end of index to get HIGH2KEY and LOW2KEY
¢ Adjust histograms, if necessary

¢ Use statistics dynamically maintained by the index manager
* FULLKEYCARD
Also used for column cardinality (COLCARD) when provided by a single column index
* NLEAF
* NLEVELS

e Use statistics dynamically maintained by the data manager
* FPAGES
* Derive table cardinality, based on lower of value derived from:
Page size and avg. row width OR
Individual counts of rows inserted, updated, deleted
e Derive # of active blocks based on extent size (for MDC tables)

* Extrapolate some other statistics (if they exist)
* Column cardinality, column group cardinality

¢ Adjust existing statistics to ensure consistency

There are a number of ways that statistics can be fabricated:

*The index can be probed to get the 2" highest and lowest values in order to fabricate
HIGH2KEY and LOW2KEY

*The Index Manager component maintains the full key cardinality (FULLKEYCARD), the
number of leaf pages (NLEAF) and the number levels (NLEVELS). These statistics can
be used directly by the optimizer.

*The Data Manager component maintains the number of file pages (FPAGES). This
value can be used directly by the optimizer. The table’s cardinality can be derived from
FPAGES because the page size and the average row width are known. Also, the Data
Manager maintains individual counts for the number or rows inserted, updated and
deleted. These counts can also be used to compute the table cardinality. Statistics
fabrication uses the lower value of these two methods.

*The number of active blocks for multi-dimensional clustered (MDC) tables can be
derived knowing the extent size and FPAGES.

*Other statistics that can’t be derived can be extrapolated from existing statistics.

The statistics fabrication process will ensure consistency between all derived and
extrapolated statistics.

23

Sensitivity Analyzer — Other Considerations

e VOLATILE tables are not considered
* Statistics could be changing too frequently
Drives too many statistics collection
* Existing fabrication and heuristics used for optimization

e Asynchronous collection is not done for DGTTs
* No catalog entries to retain statistics
* Current connection needs immediate statistics (synchronous or fabricated)

e Synchronous collection is not done if DGTT already has statistics

* Minimize dynamic statement cache invalidation
Remember that static SQL referencing DGTTs uses incremental bind e.g. essentially dynamic

24

Sensitivity Analyzer — Other Considerations

e Tables with manually updated statistics are not considered for either

synchronous or asynchronous collection
* i.e. UPDATE SYSSTAT.TABLES SET CARD = 500 ...

* User has assumed responsibility for maintaining statistics manually
* Would be bad for db2look simulations!
* An explicit RUNSTATS will re-enable for consideration

e A truncated table is considered to have ‘infinite’ UDI

 Synchronous collection/fabrication not performed for SET INTEGRITY or

REFRESH TABLE
* Hybrid DDL and DML statements

25

Configuring RTS Time Limit

e Use optimization profiles (hints) to configure an RTS time limit
» Defaultis 5 seconds
» Can also disable RTS for selected statements or groups of statements

e Time is specified in milliseconds
» Set the RTS time limit to 3.5s
<RTS TIME="3500" />
* Disable RTS for a particular statement
<RTS OPTION=“DISABLE" />
e Can’t enable RTS with optimization profile unless RTS is enabled for database
e.g. AUTO_RUNSTATS and AUTO_STMT_STATS must be ON

e Can be specified as embedded hint on SQL statement
/* <OPTGUIDELINES> <RTS TIME="3500" /> </OPTGUIDELINES> */

RTS requests

The RTS general request element can be used to enable or disable real-time statistics collection. It can
also be used to limit the amount of time taken by real-time statistics collection. For certain queries or
workloads, it may be desirable to disable or limit the time spent on real-time statistics collection to avoid
extra overhead at statement compilation time.

Description
The RTS general request element has two optional attributes.

The OPTION attribute is used to enable or disable real-time statistics collection. It can take the values
ENABLE or DISABLE. ENABLE is the default if no option is specified.

The TIME attribute specifies the maximum amount of time in milliseconds to be spent on real-time
statistics collection at statement compilation time, for a single statement.

If ENABLE is specified for the OPTION attribute, automatic statistics collection and real-time statistics
must be enabled by their corresponding configuration parameters. Otherwise, the optimization guideline
will not be applied, and you will get warning message SQL0437W (reason code 13).

For example, the following RTS request enables real-time statistics collection and limits real-time
statistics collection time to 3.5 seconds.

<RTS OPTION="ENABLE" TIME="3500" />

26

Automatic Statistics Sampling

e Automatic sampling rate determination for automatic statistics collection

* Used by synchronous and asynchronous collection
* Applies to tables, indexes and statistical views

e The sampling rate is determined based on the size of the table, index or view

e Page-level sampling is used for both data and index pages

* Where supported, for statistical views

e Controlled by a DB configuration parameter:

Automatic table maintenance (AUTO_TBL_MAINT) =
Automatic runstats (AUTO_RUNSTATS)
(AUTO_STMT_ STATS)
(AUTO_STATS_ VIEWS)
Automatic sampling (AUTO_SAMPLING)

Real-time statistics

Statistical views

ON

I

ON
ON
ON
ON

27

27

Statistics Cache

e Synchronous and fabricated statistics are not stored in the system catalogs
* Requires considerable 1/0,
¢ Could cause lock contention

e Stored in a statistics cache instead

e Written to system catalogs asynchronously, soon after collection
« Typically, within 5 minutes

» Synchronous and fabricated statistics are available to other compilation requests once

they are stored in statistics cache
* Do need to wait to become available in system catalogs

e Statistics cache is part of existing catalog cache
e Only exists on catalog DB partition in a DPF environment
e Statistics cache contents can be displayed with db2pd tool

A statistics cache is used to make synchronously-collected statistics available to all
gueries. This cache is part of the catalog cache. In a partitioned database
environment, this cache resides only on the catalog database partition. The catalog
cache can store multiple entries for the same SYSTABLES object, which increases the
size of the catalog cache on all database partitions. Consider increasing the value of
the catalogcache_sz database configuration parameter when real-time statistics
collection is enabled

28

Statistics Cache

db2pd -alldbs —statisticscache details

Database Par

Statistics Cadl

Current Size

High Water Mark |

Entries in Statistics (
S

on 0 -- Database PROD1 -- Active —- Up 10 days 02:56:13

LastRefID Las
18

ages for table
ages in the file
overflow records
indexes

xml indexes

al no. of columns

DGTT options : s
v ow Compression Ratio
rows compressed
compressed
Avg row size
Active Blocks

COLUMN DESCRIPTION

@

This page shows an example of the db2pd tool output displaying the
contents of an entry in the statistics cache.

RTS and Catalog Cache

¢ Synchronous statistics collection doesn’t ‘hard’ invalidate existing entries in the

catalog cache

* Requires waiting for the connection using the entry to release it

Existing entries are ‘soft’ invalidated

* Marked invalid, but existing connection can continue to use them

* Flushed once the connection releases them

New catalog lookups load the latest entry from the statistics cache

 |f the statistics haven’t already been ‘hardened’ to disk

» Consequently, the catalog cache could contain multiple entries for the same table
* N are marked soft invalid
* 1lisvalid (current)

db2pd can be used to view the catalog cache

Consider increasing the value of the catalogcache_sz database configuration
parameter

RTS and Catalog Cache

db2pd -catalogcache -db prodl

Database Partition 0

- Database PROD1 -- Active -- Up 57 days 00:05:34

1064960
78272
4294901760

131072

Type TableID TbspaceID LastRefID Catal

YSTABLES T S 0 19288214 00010 0232FF82043

v 0 0 0232FD36043

0232FFB6043

: 0 19288214 0001000 0232FCS0043

;?;?S$F§A;5RéER_LINE T 4 2 19288214 1 78 232FC
P§2P§FR749R£ER_LINE T 4 2 15288214 1 007800 0238FCF4043
19288214 0001000007800000234433A043

There are 2 entries for table DB2USER.ORDER_LINE in the catalog cache. The status (Sts) for the first one is
V=valid. The status for the second is S=soft invalid. The second entry was soft invalidated because synchronous
statistics were collected or fabricated while another DB connection was using the entry. Subsequent references to
DB2USER.ORDER_LINE will use the new valid entry and the soft-invalid entry will be flushed from the cache after
the current connection releases it.

SYSTABLES:
Address Address of catalog cache entry
Schema The schema qualifier for the table.
Name The name of the table.
Type The type of the table.
TablelD The table identifier.
ThspacelD The identifier of the table space where the table resides.
LastRefID The last process identifier that referenced the table.
CatalogCache LoadingLock

The name of the catalog cache loading lock for the cache entry. A lock is acquired when the
catalog cache entry is being loaded.

CatalogCache UsagelLock

The name of the usage lock for the cache entry. A lock is acquired when the catalog cache entr is
being referenced.

Sts
The status of the entry. The possible values are:
V (valid).
| (invalid).
S (soft invalid. Catalog cache entries become soft invalid when statistics have been updated by
real-time statistics collection. These catalog cache entries may still be used by a database agent,

but they are not valid for use by a new catalog cache request. Once the soft invalid entry is no
longer in use, it will be removed. New catalog cache requests will use the valid entry.)

31

Static and Dynamic SQL Statements

e Dynamic statements
» Synchronous and asynchronous collection invalidates cached dependent dynamic
statements

So they can be recompiled with the most current statistics

* Dynamic statement cache doesn’t perform sensitivity analysis
Minimize overhead for cache lookup
High dynamic statement cache hit rate means few synchronous requests
Regular automatic statistics collection may cause periodic invalidation

e Static statements

« Static packages are not invalidated by synchronous or asynchronous collection
Must perform manual BIND/REBIND as today
* RTS can occur during bind for static statements

32

Automated Maintenance Policy

Policy controls automatic table maintenance activities
* Maintenance window (when to collect statistics)
* Table identification (tables for which statistics should be collected)
* Specified using:
SYSPROC.AUTOMAINT_SET_POLICY stored procedure
SYSPROC.AUTOMAINT_SET_POLICYFILE stored procedure

e Maintenance window doesn't apply to synchronous collection
¢ By definition, RTS needs to happen all the time

Table list affects both synchronous and asynchronous collection

No defined maintenance window effectively disables asynchronous collection
* Results in only synchronous collection
¢ Inaccurate statistics will persist longer in the statistics cache

Some examples:

The Ijollowing causes the online maintenance to occur for 3 hours at the end of the first day of every month when ever falls on
Monday:

<OnlineWindow Occurrence="During" startTime="21:00:00" duration="3">
<DaysOfWeek>Mon</DayOfWeek>
<DaysOfMonth>1</DayOfMonth>
<MonthsOfYear>All</MonthOfYear>

</OnlineWindow>

You can specify which tables to exclude from the automatic statistics collection by using an expression similar to an SQL-style
"where clause" in the FilterCondition. For example, the following specifies that all tables with names that match the pattern
'EMP%' should be excluded from the statistics collection:

<RunstatsTableScope>
<FilterCondition>=TABSCHEMA NOT LIKE 'EMP%' </FilterCondition>
</RunstatsTableScope>

You can specify <FilterCondition/> to select all the tables.
For example, the following specifies that statistics should be collected for all tables, including system tables:
<RunstatsTableScope>
<FilterCondition/>
</RunstatsTableScope>

For example, the following specifies that statistics should be collected for all tables except system tables:
<RunstatsTableScope>

<FilterCondition>TABNAME NOT LIKE 'SYS%' </FilterCondition>
</RunstatsTableScope>

33

Statistical Profiles

e Statistical profiles allow RUNSTATS options to be registered in a profile

* Profile can be specified for subsequent RUNSTATS without re-specifying
options
* Profile can be specified for LOAD
e Profile is stored in system catalogs
» SYSIBM.SYSTABLES.STATISTICS _PROFILE
 Stored in form of original RUNSTATS command
* Profile can be modified or replaced

» All RUNSTATS options can be specified
« Including sampling and index options

The RUNSTATS utility provides a statistical profile facility to:

1) register a statistical profile, while optionally gathering statistics

2) modify an existing statistical profile stored in the catalogs, while optionally gathering
statistics

3) repeatedly gather statistics on the table using an already registered statistics profile
for that particular table.

This may be convenient for multiple scripts that need to perform RUNSTATS on the
same set of tables so the RUNSTATS options don’t need to be repeated in every
script. Additionally, the statistical profile can be specified for LOAD so that consistent
RUNSTATS options can be used and don’t need to be repeated on the LOAD
command.

When a statistical profile is registered, a RUNSTATS command string corresponding to
that profile is at the same time built and stored in the STATISTICS_PROFILE
column of the catalog table SYSIBM.SYSTABLES. An internal version of the profile
is also maintained in the system catalogs in SYSTABLES.PACKED_DESC.

34

Statistical Profile Examples

e Register a profile and gather statistics:

RUNSTATS ON TABLE db2 -.employee

WITH DISTRIBUTION ON COLUMNS (EMPL TITLE, EMPL SALARY)
DEFAULT NUM_ FREQVALUES 50 SET PROFILE -

e Use the registered profile to gather statistics:
RUNSTATS ON TABLE db2user.employee USE PROFILE

e Update the profile without gathering statistics:

RUNSTATS ON TABLE db2user.employee

ON COLUMNS (EMPL NAME LIKE STATISTICS, (EMPL TITLE, EMPL SALARY))
WITH DISTRIBUTION ON COLUMNS (EMPL TITLE NUM FREQVALUES 75)
UPDATE PROFILE ONLY a h

e Unset a profile
e RUNSTATS ON TABLE db2user.employee UNSET PROFILE

>>-RUNSTATS--ON TABLE--table name---+-- USE PROFILE -------- +-
><
+-— UNSET PROFILE —-----—- +
'-- statistics-options -'
Statistics Options:

-~ SET PROFILE NONE --—---—=---—--—————
| |
R e e L TR +-=|
| |
+--| SET |----+-- PROFILE --4---—---—-- +
| | | |
'--| UPDATE |-' '-] ONLY |-‘

35

Statistical Profiles and Automatics Statistics

e RTS and automatic statistics collection use statistical profiles, when available
» Default RUNSTATS options used otherwise
* RUNSTATS ON TABLE db2user.employee WITH DISTRIBUTION AND
SAMPLED DETAILED INDEXES ALL

e Exceptionsfor RTS
* Synchronous statistics collection may use a different sampling rate and method than
what is specified in the statistical profile
Necessary to limit overhead
. Statfistics fabrication may not be possible for all columns specified in the statistical
profile
E.g. column must be leading in an index in order to fabricate COLCARD, HIGH2KEY and
LOW2KEY

e Asynchronous collection always uses the options specified in the statistical
profile

Synchronous and asynchronous statistics are collected according to a statistical profile
that is in effect for a table, with the following exceptions:

To minimize the overhead of synchronous statistics collection, the database manager
might collect statistics using sampling. In this case, the sampling rate and method might
be different from those specified in the statistical profile.

Synchronous statistics collection might choose to fabricate statistics, but it might not be
possible to fabricate all statistics specified in the statistical profile. For example, column
statistics such as COLCARD, HIGH2KEY, and LOW2KEY cannot be fabricated unless
the column is leading in some index.

If synchronous statistics collection cannot collect all statistics specified in the statistical
profile, an asynchronous collection request is submitted.

36

Automatic Column Group Statistics (Db2 11.5)

e Column group statistics are used to detect and correct for data correlation

POLICY CLAIMS

Column Cardinality Column Cardinality

POLICY_NO 10000 — POLICY_NO 5000

POLICY_REV 20 — POLICY_REV 10

Strong correlation: not every Domain inclusion: CLAIMS is a child

policy has 20 revisions. of POLICY, but not every policy has a
claim

e Solution: create column group statistics:
RUNSTATS ON TABLE db2user.POLICY

ON ALL COLUMNS € gather basic stats on all columns

AND COLUMNS ((POLICY_NO, POLICY_REV)) € and the column group

37

Automatic Column Group Statistics (Db2 11.5)

* |dentifying correlation and specifying RUNSTATS options requires effort
* IBM Data Server Manager provides a statistics advisor

* Db2 will do this automatically as part of automatic statistics collection
* Performs an automatic discovery of pair-wise column group statistics
* Registers a statistics profile with the column group statistics options
» Future automatic statistics collection will use the statistics profile
* Automatic discovery only occurs during asynchronous (background) collection

38

Minimizing Automatic Statistics Collection Overhead

e Asynchronous collectionis throttled

* Guaranteed upper limit (7%) for the impact on the running workload
e Time limit for synchronous collection

* 5s default, configurable
e Synchronous collectiondoes not update catalogs

» Avoids I/O overhead and locking
» Performs catalog cache soft invalidation

e Only 1 synchronous collection per table

e Synchronous collection never blocks other compilation requests
* They either fabricate or use current stats

e Synchronousor asynchronous requests don't block any table operations e.g.
UDI, DDL, LOAD, REFRESH, etc.

* Request fails silently, retries later

e Synchronouscollectionis blocked for 'system' SQL
* i.e. SQL issued internally by Db2 or by Db2 utilities

Careful consideration was given to minimize the overhead of Automatic
Statistics Collection.

39

Monitoring Automatic Statistics Collection

e MON_GET_AUTO_RUNSTATS_QUEUE table function
* Retrieve information about objects queued for evaluation
* |f evaluation determines that statistics should be collected, object moves to the
auto-maintenance queue
e MON_GET_AUTO_MAINT_QUEUE table function
* Get information about the automatic maintenance jobs, including RUNSTATS
* Does not include RTS requests, because they go on a different queue
e MON_GET_RTS_RQST table function
* Retrieve information about real-time statistics requests on RTS queue

40

MON_GET_AUTO_RUNSTATS_QUEUE :

https://www.ibm.com/support/knowledgecenter/en/SSEPGG 11.1.0/com.ibm.db2.luw.sq
l.rtn.doc/doc/r0059254.html

MON_GET_AUTO_MAINT_QUEUE

https://www.ibm.com/support/knowledgecenter/en/SSEPGG 11.1.0/com.ibm.db2.luw.sq
l.rtn.doc/doc/r0059269.html

MON_GET_RTS_RQST
https://www.ibm.com/support/knowledgecenter/en/SSEPGG 11.1.0/com.ibm.db2.luw.sq

l.rtn.doc/doc/r0059255.html

40

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059255.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059255.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059255.html

Monitoring Real-time Statistics (1] 2)

e Database level
* Returned by MON_GET_DATABASE and MON_GET_DATABASE DETAILtable
functions
stats_cache_size— Size of statistics cache
stats_fabrications — Total number of statistics fabrications
sync_runstats — Total number of synchronous RUNSTATS operations
async_runstats — Total number of asynchronous RUNSTATS operations

stats_cache_size — Size of statistics cache
The current size of the statistics cache, which is used in a catalog partition to cache statistics information generated
by real-time statistics gathering.

stats_fabrications — Total number of statistics fabrications

The total number of statistics fabrications performed by real-time statistics during query compilation for all the
database applications. Rather than obtaining statistics by scanning data stored in a table or an index, statistics are
fabricated based on metadata maintained by the index and data manager. Values reported by all the database
partitions are aggregated together.

sync_runstats — Total number of synchronous RUNSTATS activities

The total number of synchronous RUNSTATS activities triggered by real-time statistics gathering for all the
applications in the database. This value includes both successful and unsuccessful synchronous RUNSTATS
commands. Values reported by all the database partitions are aggregated together.

async_runstats — Total number of asynchronous RUNSTATS requests

The total number of successful asynchronous RUNSTATS activities performed by real-time statistics gathering for all
the applications in the database. Values reported by all the database partitions are aggregated together.

41

Monitoring Real-time Statistics (2] 2)

e Database and statement level

Returned by 12 monitoring table functions

Too many to list here — see Knowledge Center for details
total_stats_fabrication_time— Total time spent on statistics fabrication activities
total_stats_fabrication_proc_time— Same as above excluding wait time
total_stats_fabrications — Total number of statistics fabrications
total_sync_runstats_time— Total time spent on synchronous RUNSTATS activities
total_synch_runstats_proc_time- Same as above excluding wait time
total_synch_runstats - Total number of synchronous RUNSTATS

Use these elements along with total_exec_time and num_executions to evaluate
the impact of synchronous or fabricated RUNSTATS on query performance

42

ADMIN_GET_TAB_INFO Table Function

e ADMIN_GET_TAB_INFO table function and ADMINTABINFO administrative view

e STATSTYPE column
¢ Indicates the type of statistics collected for a table
* 'F' = Fabricated statistics
« 'A’=Asynchronously gathered statistics.
¢ 'S'=Synchronously gathered statistics.
¢ 'U' = User gathered statistics.
RUNSTATS, CREATE INDEX, LOAD, REDISTRIBUTE or by manually updating system catalog statistics.

e STATS_ROWS_MODIFIED - UDI counter
e RTS_ROWS_MODIFIED - RTSUDI counter

e STATS_DBPARTITION
* Indicates if asynchronous collection is occurring on a particular DB partition

43

db2pd support

e db2pd —tcbstats
* RTSUDI counter
The number of rows updated, deleted or inserted since the last RTS collection, asynchronous
collection or manual RUNSTATS
* UDI counter
The number of rows updated, deleted or inserted since the last asynchronous collection or manual
RUNSTATS

e db2pd -statisticscache summary | detail | find schema=<schema> object=<object>
¢ Displays contents of statistics cache

44

Explain Facility Support

e Capture all statistics used for query optimization
* Could be sourced from the statistics cache
« Statistics cache version will be different from the system catalogs

e All statistics are stored in the explain snapshot
e Collect explain snapshot in addition to explain table population

e Methods:
SET CURRENT EXPLAIN MODE EXPLAIN
SET CURRENT EXPLAIN SNAPSHOT EXPLAIN

<query>
e Or:

EXPLATIN PLAN WITH SNAPSHOT FOR <query>
¢ db2exfmt or Visual Explain will display the statistics

e EXPLAIN_FORMAT_STATS scalar function
* Can be used to format snapshot directly from explain tables

EXPLAIN_FORMAT_STATS Scalar function

This new scalar function is used to display formatted statistics information which is parsed and extracted from explain
snapshot captured for a given query. The data type of the result is CLOB(50M).

Syntax
_>>-EXPLAIN_FORMAT_STATS--(--snapshot--) ><
The schema is SYSPROC.

Scaler function parameters
snapshot

An input argument of type BLOB(10M) that is the explain snapshot captured for a given query. It is stored
as snapshot column of explain table EXPLAIN_STATEMENT

Authorization
EXECUTE privilege on the EXPLAIN_FORMAT_STATS function.

Example

SELECT EXPLAIN_FORMAT_STATS(SNAPSHOT)

FROM EXPLAIN_STATEMENT

WHERE EXPLAIN_REQUESTER ='DB2USER1' AND
EXPLAIN_TIME = timestamp('2006-05-12-14.38.11.109432") AND
SOURCE_NAME ="'SQLC2FO0A' AND

SOURCE_SCHEMA ='NULLID' AND

SOURCE_VERSION =" AND

EXPLAIN_LEVEL ='0O" AND STMTNO =1 AND SECTNO =201

45

Statistics Logging Facility

¢ Logs all statistics collection activities
* Synchronous, asynchronous or manual RUNSTATS

* High speed log — no contention from multiple agents
* Rotating log
* Default name is db2optstats.number.log

e Resides in SDIAGPATH/events directory
* Typically sgllib/db2dump/events

* Log behavior is controlled by DB2_OPTSTATS_LOG registry variable
* Specify number of log files, size of log file, name and location
db2set DB2 OPTSTATS_ LOG=ON,NUM=6, SIZE=25,NAME=mystatslog,DIR=mystats

DB2_OPTSTATS_LOG

Operating system: All
Default=Not set (see details below), Values=OFF, ON {NUM | SIZE | NAME | DIR}

DB2_OPTSTATS_LOG specifies the attributes of the statistics event logging files which are used
to monitor and analyze statistics collection related activities. When DB2_OPTSTATS_LOG is not
set or set to ON, statistics event logging is enabled, allowing you to monitor system performance
and keep a history for better problem determination. Log records are written to the first log file until
it is full. Subsequent records are written to the next available log file. If the maximum number of
files is reached, the oldest log file will be overwritten with the new records. If system resource
consumption is of great concern to you, disable this registry variable by setting it to OFF.

When statistics event logging is explicitly enabled (set to ON), there are a number of options you can

modify:

NUM: the maximum number of rotating log files. Default=5, Values 1 - 15

SIZE: the maximum size of rotating log files. (The size of each rotating file is SIZE/NUM.)
Default=100 Mb, Values 1 Mb — 4096 Mb

NAME: the base name for rotating log files. Default=db2optstats.<number>.log, for instance
db2optstats.0.log, db2optstats.1.log, etc.

DIR: the base directory for rotating log files. Default=$DIAGPATH/events

You can specify a value for as many of these options as you want, just ensure that ON is the first value
when you want to enable statistics logging. For instance, to enable statistics logging with maximum of 6 log
files, a maximum file size of 25 Mb, a base file name of mystatslog, and the directory mystats, issue the
following command:

db2set DB2_OPTSTATS_LOG=0N,NUM=6,SIZE=25,NAME=mystatslog,DIR=mystats

46

Statistics Logging Facility

» Statistics log can be viewed directly or

» Statistics log records can be retrieved with a table function
* SYSPROC.PD_GET_DIAG_HIST
* Generic table function used for multiple logging facilities

EVENTTYPE OBJTYPE OBJSCHEMA OBJNAME EVENT1 EVENT2_TYPE

START STATS DAEMON - PROD_DB 2017-07-09-18.37.40.398905 start

COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2017-07-09-18.37.43.261222 Synchronous start
COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2017-07-09-18.37.43.407447 Synchronous success
COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2017-07-09-18.37.43.471614 Asynchronous start
COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2017-07-09-18.37.43.524496 Asynchronous success

STOP STATS DAEMON PROD_DB 2017-07-09-18.37.43.526212 success

COLLECT TABLE STATS DB2USER ORDER_LINE 2017-07-09-18.37.48.676524 Synchronous sampled start
COLLECT TABLE STATS DB2USER ORDER_LINE 2017-07-09-18.37.53.677546 Synchronous sampled failure
START EVALUATION PROD_DB 2017-07-10-12.36.11.092739 success

COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2017-07-10-12.36.30.737603 Asynchronous start
COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2017-07-10-12.36.34.029756 Asynchronous success
STOP EVALUATION = PROD_DB 2017-07-10-12.36.39.685188 success

In this example, the query returns statistics log records for events up to one year prior to
the current timestamp, by invoking PD_GET_DIAG_HIST.

SELECT pid, tid, substr(eventtype, 1,10), substr(ocbjtype,1l,30) as
objtype, substr (objname qualifier,1,20) as objschema,

substr (objname,1,10) as objname,

substr (first eventqualifier,1,26) as eventl,

substr (second eventqualifiertype,1,2) as eventZ type,

substr (second eventqualifier,1,20) event2,

substr (third eventqualifiertype,1l,6) event3 type,

substr (third eventqualifier,1,15) event3, substr(eventstate,1,20)
as eventstate FROM TABLE (SYSPROC.PD GET DIAG HIST ('optstats',
'EX', 'NONE', CURRENT TIMESTAMP - 1 year, CAST(NULL AS TIMESTAMP
))) as sl order by

timestamp (varchar (substr (first eventqualifier,1,26),26)) ;

a7

Partitioned Database (MPP) Considerations

Only 1 DB agent performs synchronous statistics collection or fabrication per table

Synchronous or fabricated statistics are collected from a single DB partition
* Existing RUNSTATS limitation

* A consistent DB partition is chosen for all synchronous, asynchronous or fabrication

requests, regardless of DB partition where sensitivity analysis occurred
« ‘Statistics reference DB partition’

* Ensures consistent statistics across RTS actions

* First partition in DB partition group

Sensitivity analysis uses UDI and RTSUDI from statistics reference DB partition

48

Fine Print

No synchronous collection support (including fabrication) for nicknames and statistical
views

No asynchronous collection support for DGTTs
RTS activities begin 5 mins after DB activation

REORG (offline or online) doesn’t trigger RTS or automatic statistics collection
« Data statistics may not have changed
¢ Long term direction is to have REORG collect statistics

Automatic REORG triggers automatics statistics collection

49

Statistics Collection Best Practices

e Use automatic statistics collection
* Including real-time statistics (RTS) (AUTO_STMT_STATS DB config parm)
* Automatic sampling (AUTO_SAMPLING DB config parm)
* Automatic column group statistics (AUTO_CG_STATS DB config parm (Db2 11.5))
¢ Collects more timely statistics
* Avoids unnecessary collection
* Easy

e Throttled
¢« Maximum 7% overhead
¢ Maximum 5s for RTS collection

e Unobtrusive
* Low-priority locks never block other applications

e Handle exceptional tables manually

Handling exceptions

e Very large tables or ‘sensitive’ tables
* Exclude (using automated maintenance policy)
Collect manually
¢ Schedule (using automated maintenance policy)
* Sample (using automatic sampling or a statistics profile)

¢ Volatile tables
« Size of table grows and shrinks frequently
Common scenario — data completely deleted and repopulated
Difficult for statistics collection to get timely and consistent view
« |f explicitly marked VOLATILE -> automatically excluded
* Manage:
Manually set representative statistics once

* 1) Populate with representative data and do one RUNSTATS
* 2) Collect statistics from another table using db2look and manually update statistics

Manually updatingstatistics also excludes from automatic collection

51

Utility Statistics Collection

e LOAD REPLACE
» Supports all RUNSTATS options using statistics profiles

e REDISTRIBUTE DATABASE PARTITION GROUP
» Supports all RUNSTATS options using statistics profiles

e CREATE INDEX
e Saves a second pass through the data

e More timely than automatic collection
* Update the statistics when you know it will change

52

What Statistics to Collect

e RTS and automatic statistics collection use statistics profiles, when available
* Default RUNSTATS options used otherwise
+ RUNSTATS ON TABLE db2user.employee WITH DISTRIBUTION AND SAMPLED
DETAILED INDEXES ALL

e Start with defaults

e Refine based on
* Providing more detailed statistics
Column groups, quantiles, frequent values, LIKE statistics
* Reducing statistics collection time
Sampling
Excluding columns that don't require statistics

» Register statistics profiles for specific tables

53

