
Current and accurate catalog statistics are the lifeblood of the query

optimizer Db2 has had automatics statistics support since version 8.2 and

real-time statistics were introduced in version 9.5. Automatic statistics

collection is enabled by default for new databases and is the recommend

best practice. So if you are still hesitant to use them, or have tried and have

had a bad experience, attend this session to gain a deeper understanding

of how they work and why you can trust them to simplify your DB

administration and improve overall query performance. In addition to

providing details on the automatic statistics architecture, this presentation

will provide details on ways to monitor and control automatic statistics

collection so that it works well for any type of Db2 system.

1

2

3

When the SQL compiler optimizes SQL query plans, its decisions are heavily

influenced by statistical information about the size of the database tables and

indexes. The optimizer also uses information about the distribution of data in

specific columns of tables and indexes if these columns are used to select rows

or join tables. The optimizer uses this information to estimate the costs of

alternative access plans for each query. When significant numbers of table

rows are added or removed, or if data in columns for which you collect

statistics is updated, execute RUNSTATS again to update the statistics.

Statistical information is collected for specific tables and indexes in the local

database when you execute the RUNSTATS utility. Statistics are collected only

for the table partition that resides on the partition where you execute the

utility or the first partition in the database partition group that contains the

table. The collected statistics are stored in the system catalog tables.

4

5

6

7

8

9

10

This Photo by Unknown Author is licensed under CC BY-SA

11

12

The box on the left represents the background automatic statistics collection process.

This process runs asynchronously to DB operations such as SQL statement execution.

The statistics evaluator determines if statistics should be collected and then initiates a

‘background’ RUNSTATS. The collected statistics are stored in the system catalogs.

The statistics for a particular table are loaded from the system catalogs into a catalog

cache, whenever they are referenced by the SQL Compiler.

Real-time statistics components are represented by the green boxes. These boxes will

be described in more detail on subsequent pages.

Statistics Cache – Synchronously collected statistics or fabricated statistics are stored

here, until they are written to the system catalogs. The Catalog Cache loads new

statistics from here, if they have not yet been written to the system catalogs

Sensitivity Analyzer – This component of the optimizer determines whether a

statement requires statistics, what statistics it requires and how to collect them.

Synchronous Collector – This component collects statistics synchronously (as part of

SQL statement compilation) by either invoking RUNSTATS or by fabricating statistics.

Asynchronous Request Queue – If the Sensitivity Analyzer determines that statistics

should be collected asynchronously, a request is added to this queue. Every 5 minutes,

a background process will be invoked to process requests in this queue.

13

14

15

16

One of the goals of the sensitivity analyzer is to minimize the amount of

synchronous statistics collection for OLTP applications. The overhead of

synchronous collection may be more apparent to OLTP applications,

however they may be able to tolerate less accurate statistics.

17

18

More details on statistical profiles and RTS are provided later in this presentation.

Repeating an overview here:

The RUNSTATS utility provides a statistical profile facility to:

1) register a statistical profile, while optionally gathering statistics

2) modify an existing statistical profile stored in the catalogs, while optionally gathering statistics

3) repeatedly gather statistics on the table using an already registered statistics profile for that particular

table.

This may be convenient for multiple scripts that need to perform RUNSTATS on the same set of tables so

the RUNSTATS options don’t need to be repeated in every script. Additionally, the statistical profile

can be specified for LOAD so that consistent RUNSTATS options can be used and don’t need to be

repeated on the LOAD command.

When a statistical profile is registered, a RUNSTATS command string corresponding to that profile is at

the same time built and stored in the STATISTICS_PROFILE column of the catalog table

SYSIBM.SYSTABLES. An internal version of the profile is also maintained in the system catalogs in

SYSTABLES.PACKED_DESC.

19

20

Some applications issue queries with search conditions looking for newly inserted data.

However, if the statistics aren’t current, they may not include the newly inserted

data. For example, the HIGH2KEY statistic for the ORDER_DATE column may be

’01/15/2008’ but the query is looking for newer order dates. Consequently, the

optimizer will assume few rows qualify. Partial statistics fabrication makes the

optimizer aware of the newer order dates, providing there is an index that includes

ORDER_DATE as a leading column. The index will be quickly probed to determine

the second highest and lowest values, which are then used to update the

HIGH2KEY and LOW2KEY statistics. Any existing histogram statistics will be

adjusted too. Partial fabrication occurs more frequently than full fabrication or

synchronous collection, however it has lower overhead. More details on full

fabrication are on the next page.

The original value of the highest histogram entry is updated by probing an index on the

column to determine the current highest value.

21

22

Synchronous statistics collection will sample tables that have more than 4000 pages.

This value and algorithm may change in the future. Synchronous collection orders the

tables smallest to largest in order to prevent small tables from being starved by larger

tables.

Asynchronous collection is always scheduled if the statistics are sampled or fully

fabricated, to ensure the most accurate statistics are stored in the system catalogs. The

in-memory RTS are intended to provide the query optimizer with something more

accurate than the stale statistics, however the statistics stored in the system catalogs

should correspond to the options specified in the statistical profile, whether it is the

default profile or a profile provided by the user.

23

There are a number of ways that statistics can be fabricated:

•The index can be probed to get the 2nd highest and lowest values in order to fabricate

HIGH2KEY and LOW2KEY

•The Index Manager component maintains the full key cardinality (FULLKEYCARD), the

number of leaf pages (NLEAF) and the number levels (NLEVELS). These statistics can

be used directly by the optimizer.

•The Data Manager component maintains the number of file pages (FPAGES). This

value can be used directly by the optimizer. The table’s cardinality can be derived from

FPAGES because the page size and the average row width are known. Also, the Data

Manager maintains individual counts for the number or rows inserted, updated and

deleted. These counts can also be used to compute the table cardinality. Statistics

fabrication uses the lower value of these two methods.

•The number of active blocks for multi-dimensional clustered (MDC) tables can be

derived knowing the extent size and FPAGES.

•Other statistics that can’t be derived can be extrapolated from existing statistics.

The statistics fabrication process will ensure consistency between all derived and

extrapolated statistics.

24

25

26

RTS requests

The RTS general request element can be used to enable or disable real-time statistics collection. It can

also be used to limit the amount of time taken by real-time statistics collection. For certain queries or

workloads, it may be desirable to disable or limit the time spent on real-time statistics collection to avoid

extra overhead at statement compilation time.

Description

The RTS general request element has two optional attributes.

The OPTION attribute is used to enable or disable real-time statistics collection. It can take the values

ENABLE or DISABLE. ENABLE is the default if no option is specified.

The TIME attribute specifies the maximum amount of time in milliseconds to be spent on real-time

statistics collection at statement compilation time, for a single statement.

If ENABLE is specified for the OPTION attribute, automatic statistics collection and real-time statistics

must be enabled by their corresponding configuration parameters. Otherwise, the optimization guideline

will not be applied, and you will get warning message SQL0437W (reason code 13).

For example, the following RTS request enables real-time statistics collection and limits real-time

statistics collection time to 3.5 seconds.

<RTS OPTION="ENABLE" TIME="3500" />

27

28

A statistics cache is used to make synchronously-collected statistics available to all

queries. This cache is part of the catalog cache. In a partitioned database

environment, this cache resides only on the catalog database partition. The catalog

cache can store multiple entries for the same SYSTABLES object, which increases the

size of the catalog cache on all database partitions. Consider increasing the value of

the catalogcache_sz database configuration parameter when real-time statistics

collection is enabled

29

This page shows an example of the db2pd tool output displaying the

contents of an entry in the statistics cache.

30

31

There are 2 entries for table DB2USER.ORDER_LINE in the catalog cache. The status (Sts) for the first one is
V=valid. The status for the second is S=soft invalid. The second entry was soft invalidated because synchronous
statistics were collected or fabricated while another DB connection was using the entry. Subsequent references to
DB2USER.ORDER_LINE will use the new valid entry and the soft-invalid entry will be flushed from the cache after
the current connection releases it.

SYSTABLES:

Address Address of catalog cache entry

Schema The schema qualifier for the table.

Name The name of the table.

Type The type of the table.

TableID The table identifier.

TbspaceID The identifier of the table space where the table resides.

LastRefID The last process identifier that referenced the table.

CatalogCache LoadingLock

The name of the catalog cache loading lock for the cache entry. A lock is acquired when the
catalog cache entry is being loaded.

CatalogCache UsageLock

The name of the usage lock for the cache entry. A lock is acquired when the catalog cache entr is
being referenced.

Sts

The status of the entry. The possible values are:

V (valid).

I (invalid).

S (soft invalid. Catalog cache entries become soft invalid when statistics have been updated by
real-time statistics collection. These catalog cache entries may still be used by a database agent,
but they are not valid for use by a new catalog cache request. Once the soft invalid entry is no
longer in use, it will be removed. New catalog cache requests will use the valid entry.)

32

33

Some examples:

The following causes the online maintenance to occur for 3 hours at the end of the first day of every month when ever falls on
Monday:

<OnlineWindow Occurrence="During" startTime="21:00:00" duration="3">

<DaysOfWeek>Mon</DayOfWeek>

<DaysOfMonth>1</DayOfMonth>

<MonthsOfYear>All</MonthOfYear>

</OnlineWindow>

You can specify which tables to exclude from the automatic statistics collection by using an expression similar to an SQL-style
"where clause" in the FilterCondition. For example, the following specifies that all tables with names that match the pattern
'EMP%' should be excluded from the statistics collection:

<RunstatsTableScope>

<FilterCondition>TABSCHEMA NOT LIKE 'EMP%' </FilterCondition>

</RunstatsTableScope>

You can specify <FilterCondition/> to select all the tables.

For example, the following specifies that statistics should be collected for all tables, including system tables:

<RunstatsTableScope>

<FilterCondition/>

</RunstatsTableScope>

For example, the following specifies that statistics should be collected for all tables except system tables:

<RunstatsTableScope>

<FilterCondition>TABNAME NOT LIKE 'SYS%' </FilterCondition>

</RunstatsTableScope>

34

The RUNSTATS utility provides a statistical profile facility to:

1) register a statistical profile, while optionally gathering statistics

2) modify an existing statistical profile stored in the catalogs, while optionally gathering

statistics

3) repeatedly gather statistics on the table using an already registered statistics profile

for that particular table.

This may be convenient for multiple scripts that need to perform RUNSTATS on the

same set of tables so the RUNSTATS options don’t need to be repeated in every

script. Additionally, the statistical profile can be specified for LOAD so that consistent

RUNSTATS options can be used and don’t need to be repeated on the LOAD

command.

When a statistical profile is registered, a RUNSTATS command string corresponding to

that profile is at the same time built and stored in the STATISTICS_PROFILE

column of the catalog table SYSIBM.SYSTABLES. An internal version of the profile

is also maintained in the system catalogs in SYSTABLES.PACKED_DESC.

35

>>-RUNSTATS--ON TABLE--table name---+-- USE PROFILE --------+-

><

+-- UNSET PROFILE ------+

'-- statistics-options –'

Statistics Options:

>--+--------- -----------+---+---------------------+-----><

'-| (Other Options) |-' '-| Profile Options |-‘

Profile Options:

.-- SET PROFILE NONE ------------------.

| |

|---+--------------------------------------+--|

| |

+--| SET |----+-- PROFILE --+----------+

| | | |

'--| UPDATE |-' '-| ONLY |-‘

36

Synchronous and asynchronous statistics are collected according to a statistical profile

that is in effect for a table, with the following exceptions:

To minimize the overhead of synchronous statistics collection, the database manager

might collect statistics using sampling. In this case, the sampling rate and method might

be different from those specified in the statistical profile.

Synchronous statistics collection might choose to fabricate statistics, but it might not be

possible to fabricate all statistics specified in the statistical profile. For example, column

statistics such as COLCARD, HIGH2KEY, and LOW2KEY cannot be fabricated unless

the column is leading in some index.

If synchronous statistics collection cannot collect all statistics specified in the statistical

profile, an asynchronous collection request is submitted.

37

38

39

Careful consideration was given to minimize the overhead of Automatic

Statistics Collection.

MON_GET_AUTO_RUNSTATS_QUEUE :

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sq

l.rtn.doc/doc/r0059254.html

MON_GET_AUTO_MAINT_QUEUE

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sq

l.rtn.doc/doc/r0059269.html

MON_GET_RTS_RQST

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sq

l.rtn.doc/doc/r0059255.html

40

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059255.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059255.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0059255.html

41

stats_cache_size – Size of statistics cache
The current size of the statistics cache, which is used in a catalog partition to cache statistics information generated
by real-time statistics gathering.

stats_fabrications – Total number of statistics fabrications
The total number of statistics fabrications performed by real-time statistics during query compilation for all the
database applications. Rather than obtaining statistics by scanning data stored in a table or an index, statistics are
fabricated based on metadata maintained by the index and data manager. Values reported by all the database
partitions are aggregated together.

sync_runstats – Total number of synchronous RUNSTATS activities

The total number of synchronous RUNSTATS activities triggered by real-time statistics gathering for all the
applications in the database. This value includes both successful and unsuccessful synchronous RUNSTATS
commands. Values reported by all the database partitions are aggregated together.

async_runstats – Total number of asynchronous RUNSTATS requests

The total number of successful asynchronous RUNSTATS activities performed by real-time statistics gathering for all
the applications in the database. Values reported by all the database partitions are aggregated together.

42

43

44

45

EXPLAIN_FORMAT_STATS Scalar function

This new scalar function is used to display formatted statistics information which is parsed and extracted from explain
snapshot captured for a given query. The data type of the result is CLOB(50M).

Syntax

>>-EXPLAIN_FORMAT_STATS--(--snapshot--)------------------------><

The schema is SYSPROC.

Scaler function parameters

snapshot

An input argument of type BLOB(10M) that is the explain snapshot captured for a given query. It is stored
as snapshot column of explain table EXPLAIN_STATEMENT

Authorization

EXECUTE privilege on the EXPLAIN_FORMAT_STATS function.

Example

SELECT EXPLAIN_FORMAT_STATS(SNAPSHOT)

FROM EXPLAIN_STATEMENT

WHERE EXPLAIN_REQUESTER = 'DB2USER1' AND

EXPLAIN_TIME = timestamp('2006-05-12-14.38.11.109432') AND

SOURCE_NAME = 'SQLC2F0A' AND

SOURCE_SCHEMA = 'NULLID' AND

SOURCE_VERSION = '' AND

EXPLAIN_LEVEL = 'O' AND STMTNO = 1 AND SECTNO = 201

46

DB2_OPTSTATS_LOG

Operating system: All

Default=Not set (see details below), Values=OFF, ON {NUM | SIZE | NAME | DIR}

DB2_OPTSTATS_LOG specifies the attributes of the statistics event logging files which are used
to monitor and analyze statistics collection related activities. When DB2_OPTSTATS_LOG is not
set or set to ON, statistics event logging is enabled, allowing you to monitor system performance
and keep a history for better problem determination. Log records are written to the first log file until
it is full. Subsequent records are written to the next available log file. If the maximum number of
files is reached, the oldest log file will be overwritten with the new records. If system resource
consumption is of great concern to you, disable this registry variable by setting it to OFF.

When statistics event logging is explicitly enabled (set to ON), there are a number of options you can
modify:

NUM: the maximum number of rotating log files. Default=5, Values 1 - 15

SIZE: the maximum size of rotating log files. (The size of each rotating file is SIZE/NUM.)
Default=100 Mb, Values 1 Mb – 4096 Mb

NAME: the base name for rotating log files. Default=db2optstats.<number>.log, for instance
db2optstats.0.log, db2optstats.1.log, etc.

DIR: the base directory for rotating log files. Default=$DIAGPATH/events

You can specify a value for as many of these options as you want, just ensure that ON is the first value
when you want to enable statistics logging. For instance, to enable statistics logging with maximum of 6 log
files, a maximum file size of 25 Mb, a base file name of mystatslog, and the directory mystats, issue the
following command:

db2set DB2_OPTSTATS_LOG=ON,NUM=6,SIZE=25,NAME=mystatslog,DIR=mystats

47

In this example, the query returns statistics log records for events up to one year prior to

the current timestamp, by invoking PD_GET_DIAG_HIST.

SELECT pid, tid, substr(eventtype, 1,10), substr(objtype,1,30) as

objtype, substr(objname_qualifier,1,20) as objschema,

substr(objname,1,10) as objname,

substr(first_eventqualifier,1,26) as event1,

substr(second_eventqualifiertype,1,2) as event2_type,

substr(second_eventqualifier,1,20) event2,

substr(third_eventqualifiertype,1,6) event3_type,

substr(third_eventqualifier,1,15) event3, substr(eventstate,1,20)

as eventstate FROM TABLE(SYSPROC.PD_GET_DIAG_HIST ('optstats',

'EX', 'NONE', CURRENT_TIMESTAMP - 1 year, CAST(NULL AS TIMESTAMP

))) as sl order by

timestamp(varchar(substr(first_eventqualifier,1,26),26)) ;

48

49

50

51

52

53

